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The paper investigates the plane strain of an anisotropic rigid Plastic 
body in the presence of stresses which correspond to the side of the 
yield prism suggested by Ivlev [ 1 1. 

1. 1n the works of Ivlev [. 1 1 , Hu [ 2 1 and Sawczuk [3 1 use was made 
of piecewise linear conditions for plastically anisotropic bodies. In 

[ 2.3 I, In the formulation of the yield con- 
ditions. the authors considered cases when 
the principal axes of stress and the principal 
axes of anisotropy were coincident at every 
point in an orthotropic body. There are, how- 
ever, few problems for which these conditions 
are satisfied. 

In the formulation of piecewise linear 
yield conditions for anisotropic bodies a 

R change in the orientation of the principal 

Pig. 1. 
axes of stress in an element of the body re- 
lative to a fixed system x, y, z Is, in 
general, a factor which must be taken into 

account. The yield condition suggested by Ivlev 11 I for bodies with 
plastic anisotropy of the most general kind do, in fact, take this factor 
into account. In the general case of plastic anisotropy the yield points 
in tension and com9ression are different and depend on the direction 
cosines given by the direction of the tension or compression relative to 
the axes x, y, Z. 

On the assumption that the yield condition is independent of the mag- 
nitude of the hydrostatic pressure and that the yield curve is not con- 
cave, the yield condition for an Ideal plastic anisotropic body can be 
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interpreted in the principal stress space as a six-sided prism, the sides 
of which are parallel to the line crl = a2 = “3” 

The yield condition (Fig. 1) is of the following form [ 1 1 : 
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Here 

k1 = kl(ti), k2 = k2(mila ks = ks(ni) are the yield points in 

tension 

sl = Sl(‘i), $2 = S,(ri)* 53 = 53(ni) are the yield points in 
compression in the 

direction of the princi- 
pal axes of stress. 

2. Let us consider the equilibrium of an anisotropic rigid plastic 
cylinder of infinite length, with generators parallel to the z-axis, 
under the action of a surface load which is constant along the generators. 
An isotropic body under such conditions would experience plane deforma- 
tion. In a body which has the most general form of anisotropy plane de- 
formation is not possible. Let us suppose that the body under considera- 
tion undergoes so-called pure plane deformation in such a way that the 
components of the stress tensor and the tensor of rate of strain are in- 
dependent of s1 and 

It follows from (2.1) that the direction of the z-axis is a principal 
direction for the stress tensor and the tensor of rate of strain. 

consequently* the orientation of the principal directions of stress 
relative to the xI y, z-system can be determined from the angle $ between 
the first principal direction and the x-axis. We note that the plastic 
state which satisfies condition (2,I) is given by points lying on the 
sides of the yield prism. 

If @I > 03 > o2 the side (PA) corresponds to the plastic state and 

has the equation 

q--0s a~-aas 
h 

-------=I 
$2 

$2 = sa (CPM (2.2) 
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If we take the left-hand side of (2.2) as the plastic potential, we 
find that the condition 62 = 0 can be satisfied only when kl($) = s2($). 
It follows that certainconditions must be satisfied concerning the 
anisotropy of the body under consideration. If the body is orthotropic, 
then for the plane deformation given by (2.1) it is essential that the 
yield point Y(4) in tension-compression satisfies the condition that 
Y(4) = Y(4 f l/2 v). A consideration of plane deformation of an ortho- 
tropic body with the yield condition used by Hill also leads to this 
fourfold symmetry of the yield point in tension-compression. 

We note that the plane deformation corresponding to an edge of the 
yield prism which was considered by Ivlev in [l 1 does not cover all 
cases of the plane deformation of an anisotropic body, since in this 
case there are no limitations on the nature of the anisotropy. and trans- 
ition in the limit to the isotropic case of plane deformation is not 
possible. 

From now on we shall assume that the body we are considering satisfies 
the above requirements. In particular, the yield points in tension and 
compression for an orthotropic body are the same, and the condition of 
plasticity (2.2) in the case of plane deformation reduces to the form 

cl - 62 = Y (9) (2.3) 

Transferring now to components in a system of Cartesian coordinates, 
we find that 

(SX - 3J2 $- “rXy2 = Y* (cp) (2.4) 

Equation (2.4) can easily be satisfied by substitution of expressions 
given by the transformation formulas 

6x-=P+~Y(~)cos2~, Qu = P - $ Y (‘0) sir) 2~, t,!, --: $ Y (cp) sin 2q1 (2.5) 

where 

(2.6) 

Substituting Expressions (2.5) into the equilibrium equations, we ob- 
tain 

2’2 - (2Y sin 2v - Y’ cos 2q) 2 + (2Y ros 2~ + Y’ sin 2rp) 2 = 0 

2’+y+ (2YCos2q~+ Y’sin2p)g+ (2Y sin2q- Y’ros2~)$= 0 
(2.‘) 

The set of equations (2.7) has two real families of orthogonal 
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characteristics, the equations of which are 

dy 2Y sin 2q7 - 
d> = 

Y’ cos 2q f JfY#’ + 4Y2 
2Y co9 2q + Y’ sin 29 (2.8) 

Along the characteristics there exist the relations 

p f C (cp) = con& (G (rp) = 4 \ v YSo+ 4Y’ dq) (2.9) 

Equations (2.5) through (2.9) coincide with the corresponding equa- 
tions of Ivlev [l ] (if the misprints in the latter are coirected), but 
they refer to the stresses on the face of the yield prism. 

If we consider the left-hand side of the yield condition (2.4) as the 
plastic potential and make use of (2,6),we can establish the flow law in 
the following form: 

T XV = h [4& - ; (3% - Gv ,] 

where E x’ ty’ yz, are the components of rate of strain. 

It will be convenient here to introduce the function 
between the first principal direction of rate of strain 

2Y sin 2q - Y’ cos 2q 
tan2$= 2y cos 2q + Y’ sin 2q 

From (2.101, (2.11) and (2.5) we can easily find the 
which gives the velocity components vz, v 

Y 
: 

(2.10) 

$ as the angle 
and the x-axis 

(2.11) 

set of equations 

2$cot29(gy+fg) =o, 2~+cot2$(~+~) =o (2.12) 

Equations (2.12) are of the hyperbolic type and their characteristics 
coincide with those of (2.7). After substitution of (2.11) the equation 
of the characteristics is considerably simplified and becomes 

(2.13) 

Thus, the characteristics are slip-lines (by slip-lines we mean lines 
of maximum rate of shear strain). In view of the anisotropy they do not 
normally coincide with the lines of maximum shear stress. 

If we now denote the components of the rates of strain along the slip 
lines a and @ by IJ and V, we have from (2.12) the following equations: 
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au / as, z= 0, avtas,=o (2.14) 

which show that the rates of linear strain along the slip-lines are zero. 
After transforming (2.14) we obtain the well-known Geiringer relations 

du - vd$ =O along the line a dv + u&# = 0 slang the line 6 (2.15) 

3, It can easily be shown that there exist particular solutions to 
Equations (2.1) - the so-called integrals of the equations of the plane 
problem in the theory of plasticity, In general, the solution reduces to 
an examination of the boundary-valus problems analogous to those for an 
isotropic body. The boundary conditions are given by the formulas 

a,=p+~Y(rp)cos2(cp---a), r,=$Y((P)sin2(cp-cr) (3.1) 

where a, and ra are the normal and tangential components of the stresses 
on the surface of the body, which is in a plastic state, and a is the 
angle between the normal to the surface and the r-axis. 

We shall consider now the line of discontinuity of stress. From the 
condition of continuity of the stress components i?u and rn on the lines 
of discontinuity we obtain the following relations: 

p++ $ Y (q+) cos 2 (CpC - 6) =P-+~Y(~-)c0.32(~--8~ (3.2) 

$ Y (cp+) sin 2 (rp* --fj)=+Y @)sinZ(cp-- 9) (3.3) 

where 0 is the angle between the normal to the line of discontinuity and 
the r-axis. 

The angle 8 can be found from (3.3) as follows: 

e=- 
- I Y (cp+) sin 21p+ - Y (cp-) sin Z&p- 

i. tan 
2 [Ic,l 

-P (q+) cos 2qzJ+ - Y (qJ-) oos 2Cp- or 8 = tan-llSX_ oUl (314) 

In contrast to the ease of an isotropic body the line of discontinuity 
in general is nowhere the bisector of the angle formed by the slip-lines, 
In the case of an orthotropic body it can bisect this angle only when 
the line of discontinuity coincides with one of the principal axes of 
anisotropy of the material. 

In our particular case of plane deformation the extremum theorems can 
be formulated in an analogous manner to the theorems for an isotropic 
body [ 5,6 1. The assumptions that the yield curve is not concave and that 
the angular change at the yield point is limited enable us to establish 
two basic inequalities which formulate the extremum properties. 
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4. As an example we shall consider the problem of finding the limit- 
ing load for an obtuse-angled wedge under the action of a uniform pres- 
sure q applied to one side of the wedge. We shall assume that the 
material is orthotropic and behaves as a 
rigid plastic body. We shall take the 
principal axes of anisotropy of the Y 1 

material as the coordinate system X, y, \ 
I 6 

Z. The angle between the axis of sym- 
0’ \-? 

metry of the wedge and the y-axis will 
be denoted by E (Fig. 2). 

9 I ), 
“/,\, 

4 
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‘;,h 
f 

D 
It is apparent that the triangular 

areas ADO, COD are in a state of uniform 
stress. These two areas are connected by 
the centered fie Id BOC. 

I 
5 -c 

Fig. 2. 

In AcO~~l=y- 1/2w-6, pl=- q + 1/2Y($I); the angle $1 between 

OC and the x-axis can be found from Equation (2.11). 

In AAOB& = -(y + E), p2 = - 1/2Y(sb, ); the angle $2 between OB and 
the x-axis can also be found from (2.11). 

Thus, having found $1 and $2, we can construct the triangular areas 
AOB and COD and then join them with the centered fan BOC. The limiting 
load 9* can be found most easily from the condition that 77 is constant 
over the whole area. 

It follows from (2.9) that 

Pl + c (cud - pi + G !pz) 

The limiting load is therefore 

(4.1) 

(4.2) 

In the case of an isotropic body we simply put Y(4) = ug = const, 
E = 0, $= $ in order to derive the well-known formula for the limiting 
load for an obtuse wedge [ 5 I. 

In a similar way we can find very simply the limiting load required 
to compress a flat piece of material into a half-plane and solve several 
other problems. 
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